On the Electrical Resistance Relaxation of 3D-Anisotropic Carbon-Fiber-Filled Polymer Composites Subjected to External Electric Fields

Author:

Huang PeiORCID,Cao Yingze,Xia Zhidong,Wang Pengfei,Chen Shaosong

Abstract

Flexible composites as sensors are applied under a small voltage, but the effect of the external electrical field on the resistance is always ignored and unexplored by current research. Herein, we investigate the electrical resistance relaxation of anisotropic composites when they are subjected to an external electric field. The anisotropic composites were 3D-printed based on carbon-fiber-filled silicon rubber. Constant DC voltages were applied to the composites, and the output electrical current increased with time, namely the electrical resistance relax with time. The deflection and migration of carbon fibers are dominantly responsible for the resistance relaxation, and the angle’s evolution of a carbon fiber, under the application and removal of the electrical field, was well observed. The other factor hindering the resistance relaxation is the increased temperature originating from the Joule heating effect. This work provides a new understanding in the working duration and the static characteristics of flexible composites.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3