A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface

Author:

Salama Amgad,Sun ShuyuORCID,Zhang Tao

Abstract

The drag of dispersals towards a membrane surface is a consequence of the filtration process. It also represents the first step towards the development of the problem of fouling. In order to combat membrane fouling, it is important to understand such drag mechanisms and provide a modeling framework. In this work, a new modeling and numerical approach is introduced that is based on a one-domain model in which both the dispersals and the surrounding fluid are dealt with as a fluid with heterogeneous property fields. Furthermore, because of the fact that the geometry of the object assumes axial symmetry and the configuration remains fixed, the location of the interface may be calculated using geometrical relationships. This alleviates the need to define an indicator function and solve a hyperbolic equation to update the configuration. Furthermore, this approach simplifies the calculations and significantly reduces the computational burden required otherwise if one incorporates a hyperbolic equation to track the interface. To simplify the calculations, we consider the motion of an extended cylindrical object. This allows a reduction in the dimensions of the problem to two, thereby reducing the computational burden without a loss of generality. Furthermore, for this particular case there exists an approximate analytical solution that accounts for the effects of the confining boundaries that usually exist in real systems. We use such a setup to provide the benchmarking of the different averaging techniques for the calculations of properties at the cell faces and center, particularly in the cells involving the interface.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3