Carbon Nanodots Embedded on a Polyethersulfone Membrane for Cadmium(II) Removal from Water

Author:

Sam SimanyeORCID,Malinga Soraya Phumzile,Mabuba Nonhlangabezo

Abstract

Cadmium(II) is a toxic heavy metal in aquatic systems. As a potential solution, green carbon nanodots (CNDs) were synthesized from oats and embedded on polyethersulfone membrane (PES) via phase inversion for the adsorption of Cd2+ from water. Characterization techniques for the CNDs and PES membranes were transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM), contact angle and a pure water flux assessment system operated at 300 kPa. TEM results showed that the CNDs were well dispersed with a uniform shape and size (6.7 ± 2.8 nm). Raman spectroscopy revealed that the CNDs were embedded on the PES and the ID/IG ratio slightly increased, showing that the membranes maintained good structural integrity.The CNDs/PES proved to be more hydrophilic than PES. The glassy carbon electrode (GCE) in anodic stripping voltammetry (ASV) technique detected 99.78% Cd2+ removal by 0.5% CNDs/PES at optimum conditions: 30 min. contact time, at pH 5 and 0.5 ppm Cd2+ solution. The 0.5% CNDs/PES removed Cd(II) due to the hydroxyl group (-OH) and carboxyl group (-COO-) on the membrane composite. It was established that Cu2+ and Pb2+ have a significant interfering effect during the analysis of Cd2+ using GCE in ASV technique. The 0.5% CNDs/PES is recyclable because it removed above 95% of cd2+ in four cycles. In a spiked tap water sample, 58.38% of Cd2+ was sensed by GCE of which 95% was in agreement with the value obtained from inductively coupled plasma optical emission spectrometry (ICPOES).

Funder

FACULTY OF SCIENCE, UJ

Centre for Nanomaterials Science Research, University of Johannesburg

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3