Abstract
CO2 enhanced oil recovery (CO2-EOR) technology is a competitive strategy to improve oil field economic returns and reduce greenhouse gas emissions. However, the arbitrary emissions or combustion of the associated gas, which mainly consists of CO2 and CH4, will cause the aggravation of the greenhouse effect and a huge waste of resources. In this paper, the high-performance facilitated transport multilayer composite membrane for CO2/CH4 separation was prepared by individually adjusting the membrane structure of each layer. The effect of test conditions on the CO2/CH4 separation performance was systematically investigated. The membrane exhibits high CO2 permeance of 3.451 × 10−7 mol·m−2·s−1·Pa−1 and CO2/CH4 selectivity of 62 at 298 K and 0.15 MPa feed gas pressure. The cost analysis was investigated by simulating the two-stage system. When the recovery rate and purity of CH4 are 98%, the minimum specific cost of separating CO2/CH4 (45/55 vol%) can be reduced to 0.046 $·Nm−3 CH4. The excellent short-to-mid-term stability indicates the great potential of large industrial application in the CH4 recovery and CO2 reinjection from oilfield associated gas.
Funder
Ministry of Science and Technology of the People´s Republic of China
the National Natural Science Foundation of China
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献