Abstract
The work presents a model for local impedance of low-Pt proton exchange membrane fuel cells (PEMFCs), including cathode pore size distribution and O2 transport along pores and through a thin ionomer film covering Pt/C agglomerates. The model was applied to fit the local impedance spectra of low-Pt fuel cells operated at current densities from 100 to 800 mA cm−2 and recorded by a segmented cell system. Assuming an ionomer film thickness of 10 nm, the fitting returned the product of the dimensionless Henry’s constant of oxygen dissolution in ionomer KH by the oxygen diffusivity DN in the ionomer (KHDN). This parameter allowed us to determine the fundamental O2 transport resistivity RN through the ionomer film in the working electrode under conditions relevant to the realistic operation of PEMFCs. The results show that variation of the operating current density does not affect RN, which remains nearly constant at ≃0.4 s cm−1.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献