Investigating the Permeation Mechanism of Typical Phthalic Acid Esters (PAEs) and Membrane Response Using Molecular Dynamics Simulations

Author:

Bao YiqiongORCID,Li Mengrong,Xie YanjieORCID,Guo JingjingORCID

Abstract

Phthalic acid esters (PAEs) are typical environmental endocrine disrupters, interfering with the endocrine system of organisms at very low concentrations. The plasma membrane is the first barrier for organic pollutants to enter the organism, so membrane permeability is a key factor affecting their biological toxicity. In this study, based on computational approaches, we investigated the permeation and intramembrane aggregation of typical PAEs (dimethyl phthalate, DMP; dibutyl phthalate, DBP; di-2-ethyl hexyl phthalate, DEHP), as well as their effects on membrane properties, and related molecular mechanisms were uncovered. Our results suggested that PAEs could enter the membrane spontaneously, preferring the headgroup-acyl chain interface of the bilayer, and the longer the side chain (DEHP > DBP > DMP), the deeper the insertion. Compared with the shortest DMP, DEHP apparently increased membrane thickness, order, and rigidity, which might be due to its stronger hydrophobicity. Potential of means force (PMF) analysis revealed the presence of an energy barrier located at the water-membrane interface, with a maximum value of 2.14 kcal mol−1 obtained in the DEHP-system. Therefore, the difficulty of membrane insertion is also positively correlated with the side-chain length or hydrophobicity of PAE molecules. These findings will inspire our understanding of structure-activity relationship between PAEs and their effects on membrane properties, and provide a scientific basis for the formulation of environmental pollution standards and the prevention and control of small molecule pollutants.

Funder

the starting fund of Nanjing Agricultural University

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assimilation of phthalate esters in bacteria;Applied Microbiology and Biotechnology;2024-03-27

2. Application of computational approaches in biomembranes: From structure to function;WIREs Computational Molecular Science;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3