Understanding Aging Mechanisms in the Context of UV Irradiation of a Low Fouling and Self-Cleaning PVDF-PVP-TiO2 Hollow-Fiber Membrane

Author:

Roubaud Emma,Maréchal William,Lorain Olivier,Lamaa Lina,Peruchon Laure,Brochier Cédric,Mendret JulieORCID,Mericq Jean-Pierre,Brosillon StephanORCID,Faur Catherine,Causserand ChristelORCID

Abstract

In the context of designing a photocatalytic self-cleaning/low-fouling membrane, the stability of PVDF-PVP-TiO2 hollow-fiber membranes under UV irradiation has been studied. The effect of irradiation power, aqueous environment composition and fouling state on the properties of the membranes has been investigated. With this aim, SEM observations, chemical analysis and tensile strength measurements have been conducted. The results indicate that pristine membranes that undergo UV irradiation in ultra-pure water are significantly degraded due to attacks of OH° radicals. However, when methylene blue, used as a model pollutant, is introduced in the aqueous environment, OH° radicals preferentially react with this molecule rather than the membranes, successfully preserving the original properties of the latter. The presence of an adsorbed BSA layer (pre-fouling by immersion) on the surface of the membrane delays membrane aging, as the BSA layer is degraded by radicals instead of the membrane material. The degradation of the BSA layer also validates the self-cleaning properties of the membrane. However, when membranes are pre-fouled by filtration of a 2 g/L BSA solution, delay to aging is less. This is because OH° radicals do not reach BSA molecules that are trapped inside the membrane pores, and therefore react with the membrane material.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3