The Suitability of Latex Particles to Evaluate Critical Process Parameters in Steric Exclusion Chromatography

Author:

Eilts FriederikeORCID,Steger Marleen,Lothert Keven,Wolff Michael W.

Abstract

The steric exclusion chromatography (SXC) is a rather new method for the purification of large biomolecules and biological nanoparticles based on the principles of precipitation. The mutual steric exclusion of a nonionic organic polymer, i.e., polyethylene glycol (PEG), induces target precipitation and leads to their retention on the chromatographic stationary phase. In this work, we investigated the application of latex particles in the SXC by altering the particle’s surface charge as well as the PEG concentration and correlated both with their aggregation behavior. The parameters of interest were offline precipitation kinetics, the product recovery and yield, and the chromatographic column blockage. Sulfated and hydroxylated polystyrene particles were first characterized concerning their aggregation behavior and charge in the presence of PEG and different pH conditions. Subsequently, the SXC performance was evaluated based on the preliminary tests. The studies showed (1) that the SXC process with latex particles was limited by aggregation and pore blockage, while (2) not the aggregate size itself, but rather the aggregation kinetics dominated the recoveries, and (3) functionalized polystyrene particles were only suitable to a limited extent to represent biological nanoparticles of comparable size and charge.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3