Viscosity Modification of Polymerizable Bicontinuous Microemulsion by Controlled Radical Polymerization for Membrane Coating Applications

Author:

Gukelberger Ephraim,Hitzel Christian,Mancuso RaffaellaORCID,Galiano FrancescoORCID,Bruno Mauro,Simonutti RobertoORCID,Gabriele BartoloORCID,Figoli AlbertoORCID,Hoinkis Jan

Abstract

Membrane modification is becoming ever more relevant for mitigating fouling phenomena within wastewater treatment applications. Past research included a novel low-fouling coating using polymerizable bicontinuous microemulsion (PBM) induced by UV-LED polymerization. This additional cover layer deteriorated the filtration capacity significantly, potentially due to the observed high pore intrusion of the liquid PBM prior to the casting process. Therefore, this work addressed an innovative experimental protocol for controlling the viscosity of polymerizable bicontinuous microemulsions (PBM) before casting on commercial ultrafiltration (UF) membranes. Prior to the coating procedure, the PBM viscosity modulation was carried out by controlled radical polymerization (CRP). The regulation was conducted by introducing the radical inhibitor 2,2,6,6-tetramethylpiperidine 1-oxyl after a certain time (CRP time). The ensuing controlled radical polymerized PBM (CRP-PBM) showed a higher viscosity than the original unpolymerized PBM, as confirmed by rheological measurements. Nevertheless, the resulting CRP-PBM-cast membranes had a lower permeability in water filtration experiments despite a higher viscosity and potentially lower pore intrusion. This result is due to different polymeric structures of the differently polymerized PBM, as confirmed by solid-state nuclear magnetic resonance (NMR) investigations. The findings can be useful for future developments in the membrane science field for production of specific membrane-coating layers for diverse applications.

Funder

European Union Horizon 2020

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3