Effect of Membrane Fouling on Fertilizer-Drawn Forward Osmosis Desalination Performance

Author:

Khraisheh Majeda,Gulied Mona,AlMomani FaresORCID

Abstract

Fertilizer-drawn forward osmosis (FDFO) has garnered immense attention for its application in the agricultural field and its potential to reuse wastewater sustainably. Membrane fouling, however, remains to be a challenge for the process. This study aims to investigate the influence of membrane fouling on the performance of the FDFO process. Synthetic wastewater (SWW) and multi-component fertilizer (MCF) were used as feed solution (FS) and draw solution (DS) with cellulose triacetate (CTA) forward osmosis (FO) membrane orientation. The performance was evaluated through water flux (WF), percentage recovery and percentage of salt reject. The WF declined from 10.32 LMH (L/m2·h) to 3.30 LMH when ultra-pure water as FS was switched with concentration FS indicating the dependence of the performance on the type of FS used. Accelerated fouling experiments conducted to verify the fouling behavior showed a decline in the water flux from 8.6 LMH to 3.09 LMH with SWW and 13.1 LMH to 3.42 LMH when deionized water was used as FS. The effects of osmotic backwashing and in situ flushing as physical cleaning methods of the foul membrane were studied through water flux and salt recovery percentage. Both cleaning methods yielded a WF close to the baseline. Osmotic backwashing yielded better results by eliminating foulant–foulant and foulant–membrane adhesion. The cleaning methods were able to recover 75% of phosphate and 60% of nitrate salts. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) results validated the effectiveness of the methods for the physical cleaning of foul membranes. This study underlines the importance of the FS used in FDFO and the effectiveness of osmotic backwashing as a cleaning method of FO membranes.

Funder

Qatar Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3