Antifouling Property of Oppositely Charged Titania Nanosheet Assembled on Thin Film Composite Reverse Osmosis Membrane for Highly Concentrated Oily Saline Water Treatment

Author:

Ahmad Nor Akalili,Goh Pei Sean,Zulhairun Abdul Karim,Ismail Ahmad Fauzi

Abstract

With the blooming of oil and gas industries, oily saline wastewater treatment becomes a viable option to resolve the oily water disposal issue and to provide a source of water for beneficial use. Reverse osmosis (RO) has been touted as a promising technology for oily saline wastewater treatment. However, one great challenge of RO membrane is fouling phenomena, which is caused by the presence of hydrocarbon contents in the oily saline wastewater. This study focuses on the fabrication of antifouling RO membrane for accomplishing simultaneous separation of salt and oil. Thin film nanocomposite (TFN) RO membrane was formed by the layer by layer (LbL) assembly of positively charged TNS (pTNS) and negatively charged TNS (nTNS) on the surface of thin film composite (TFC) membrane. The unique features, rendered by hydrophilic TNS bilayer assembled on TFC membrane in the formation of a hydration layer to enhance the fouling resistance by high concentration oily saline water while maintaining the salt rejection, were discussed in this study. The characterization findings revealed that the surface properties of membrane were improved in terms of surface hydrophilicity, surface roughness, and polyamide(PA) cross-linking. The TFC RO membrane coated with 2-bilayer of TNS achieved >99% and >98% for oil and salt rejection, respectively. During the long-term study, the 2TNS-PA TFN membrane outperformed the pristine TFC membrane by exhibiting high permeability and much lower fouling propensity for low to high concentration of oily saline water concentration (1000 ppm, 5000 ppm and 10,000 ppm) over a 960 min operation. Meanwhile, the average permeability of uncoated TFC membrane could only be recovered by 95.7%, 89.1% and 82.9% for 1000 ppm, 5000 ppm and 10,000 ppm of the oily saline feedwater, respectively. The 2TNS-PA TFN membrane achieved almost 100% flux recovery for three cycles by hydraulic washing.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3