Membrane Biofouling Control by Surface Modification of Quaternary Ammonium Compound Using Atom-Transfer Radical-Polymerization Method with Silica Nanoparticle as Interlayer

Author:

Ren Lehui,Ping Meng,Zhang XingranORCID

Abstract

A facile approach to fabricate antibiofouling membrane was developed by grafting quaternary ammonium compounds (QACs) onto polyvinylidene fluoride (PVDF) membrane via surface-initiated activators regenerated by electron transfer atom-transfer radical-polymerization (ARGET ATRP) method. During the modification process, a hydrophilic silica nanoparticle layer was also immobilized onto the membrane surface as an interlayer through silicification reaction for QAC grafting, which imparted the membrane with favorable surface properties (e.g., hydrophilic and negatively charged surface). The QAC-modified membrane (MQ) showed significantly improved hydrophilicity and permeability mainly due to the introduction of silica nanoparticles and exposure of hydrophilic quaternary ammonium groups instead of long alkyl chains. Furthermore, the coverage of QAC onto membrane surface enabled MQ membrane to have clear antibacterial effect, with an inhibition rate ~99.9% of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive), respectively. According to the batch filtration test, MQ had better antibiofouling performance compared to the control membrane, which was ascribed to enhanced hydrophilicity and antibacterial activity. Furthermore, the MQ membrane also exhibited impressive stability of QAC upon suffering repeated fouling–cleaning tests. The modification protocols provide a new robust way to fabricate high-performance antibiofouling QAC-based membranes for wastewater treatment.

Funder

National Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3