Development of an Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device to Increase Electrolyte Concentrations to Biomedical Devices

Author:

Pakkaner EfecanORCID,Orton Jessica L.,Campbell Caroline G.,Hestekin Jamie A.,Hestekin Christa N.

Abstract

Emerging technologies in nanotechnology and biomedical engineering have led to an increase in the use of implantable biomedical devices. These devices are currently battery powered which often means they must be surgically replaced during a patient’s lifetime. Therefore, there is an important need for a power source that could provide continuous, stable power over a prolonged time. Reverse electrodialysis (RED) based biopower cells have been previously used to generate continuous power from physiologically relevant fluids; however, the low salinity gradient that exists within the body limited the performance of the biopower cell. In this study, a miniaturized RED biopower cell design coupled with a salt cartridge was evaluated for boosting the salt concentration gradient supplied to RED in situ. For the salt cartridge, polysulfone (PSf) hollow fibers were prepared in-house and saturated with NaCl solutions to deliver salt and thereby enhance the concentration gradient. The effect of operational parameters including solution flow rate and cartridge salt concentration on salt transport performance was evaluated. The results demonstrated that the use of the salt cartridge was able to increase the salt concentration of the RED inlet stream by 74% which in turn generated a 3-fold increase in the open circuit voltage (OCV) of the biopower cell. This innovative adaptation of the membrane-based approach into portable power generation could help open new pathways in various biomedical applications.

Funder

Arkansas Biosciences Institute

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3