The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes

Author:

Rana Ikram,Nagaoka Takahiro,Nagasawa Hiroki,Tsuru Toshinori,Kanezashi MasakotoORCID

Abstract

A series of pendant–type alkoxysilane structures with various carbon numbers (C1–C8) were used to fabricate sol–gel derived organosilica membranes to evaluate the effects of the C/Si ratio and fluorine doping. Initially, this investigation was focused on the effect that carbon-linking (pendant–type) units exert on a microporous structure and how this affects the gas-permeation properties of pendant–type organosilica membranes. Gas permeation results were compared with those of bridged–type organosilica membranes (C1–C8). Network pore size evaluation was conducted based on the selectivity of H2/N2 and the activation energy (Ep) of H2 permeation. Consequently, Ep (H2) was increased as the C/Si ratio increased from C1 to C8, which could have been due to the aggregation of pendant side chains that occupied the available micropore channel space and resulted in the reduced pore size. By comparison, these permeation results indicate that pendant–type organosilica membranes showed a somewhat loose network structure in comparison with bridged–type organosilica membranes by following the lower values of activation energies (Ep). Subsequently, we also evaluated the effect that fluorine doping (NH4F) exerts on pendant−type [methytriethoxysilane (MTES), propyltrimethoxysilane (PTMS)] and bridged-type [1,2–bis(triethoxysilyl)methane (BTESM) bis(triethoxysilyl)propane (BTESP)] organosilica structures with similar carbon numbers (C1 and C3). The gas-permeation properties of F–doped pendant network structures revealed values for pore size, H2/N2 selectivity, and Ep (H2) that were comparable to those of pristine organosilica membranes. This could be ascribed to the pendant side chains, which might have hindered the effectiveness of fluorine in pendant–type organosilica structures. The F–doped bridged–type organosilica (BTESM and BTESP) membranes, on the other hand, exhibited a looser network formation as the fluorine concentration increased.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3