Xylem-Inspired Hydrous Manganese Dioxide/Aluminum Oxide/Polyethersulfone Mixed Matrix Membrane for Oily Wastewater Treatment

Author:

Yun Teng Sam,Oh Pei Ching,Toh Moau Jian,Yap Yun KeeORCID,Te Qin Yi

Abstract

Ultrafiltration membrane has been widely used for oily wastewater treatment application attributed to its cost-efficiency, ease of operation, and high separation performance. To achieve high membrane flux, the pores of the membrane need to be wetted, which can be attained by using hydrophilic membrane. Nevertheless, conventional hydrophilic membrane suffered from inhomogeneous dispersion of nanofillers, causing a bottleneck in the membrane flux performance. This called for the need to enhance the dispersion of nanofillers within the polymeric matrix. In this work, in-house-fabricated hydrous manganese dioxide–aluminum oxide (HMO-Al2O3) was added into polyethersulfone (PES) dope solution to enhance the membrane flux through a xylem-inspired water transport mechanism on capillary action aided by cohesion force. Binary fillers HMO-Al2O3 loading was optimized at 0.5:0.5 in achieving 169 nm membrane mean pore size. Membrane morphology confirmed the formation of macro-void in membrane structure, and this was probably caused by the hydrophilic nanofiller interfacial stress released in PES matrix during the phase inversion process. The superhydrophilic properties of PES 3 in achieving 0° water contact angle was supported by the energy-dispersive X-ray analysis, where it achieved high O element, Mn element, and Al elements of 39.68%, 0.94%, and 5.35%, respectively, indicating that the nanofillers were more homogeneously dispersed in PES matrix. The superhydrophilic property of PES 3 was further supported by high pure water flux at 245.95 L/m2.h.bar, which was 3428.70% higher than the pristine PES membrane, 197.1% higher than PES 1 incorporated with HMO nanofiller, and 854.00% higher than PES 5 incorporated with Al2O3 nanofillers. Moreover, the excellent membrane separation performance of PES 3 was achieved without compromising the oil rejection capability (98.27% rejection) with 12 g/L (12,000 ppm) oily wastewater.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3