Abstract
In membrane processes, a spacer is known to play a key role in the mitigation of membrane fouling. In this study, the effect of electric polarization on a graphene-blended polymer spacer (e.g., poly(lactic acid), PLA) for organic fouling on membrane surfaces was investigated. A pristine PLA spacer (P-S), a graphene-blended spacer (G-S), and an electrically polarized graphene-blended spacer (EG-S) were successfully fabricated by 3D printing. Organic fouling tests were conducted by the 5-h filtration of CaCl2 and a sodium alginate solution through commercially available membranes, which were placed together with the fabricated spacers. Membranes utilizing P-S, G-S, and EG-S were characterized in terms of the fouling amount on the membrane surface and fouling roughness. Electrostatic forces of EG-S provided 70% less and 90% smoother fouling on the membrane surface, leading to an only 14% less water flux reduction after 5 h of fouling. The importance of nanomaterial blending and polarization was successfully demonstrated herein.
Funder
National Research Foundation of Korea
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献