Abstract
In response to increasingly stringent restrictions for drinking water quality, a parallel operation of two common technologies, low-pressure reverse osmosis (LPRO) and activated carbon filtration (ACF), was investigated in a comprehensive five-month pilot study for the removal of 32 typical trace organic contaminants (TrOCs) from Rhine bank filtrates employing a semi- technical plant. TrOCs have been divided into three groups: polyfluorinated aliphatic compounds; pharmaceuticals, pesticides and metabolites; in addition to volatiles, nitrosamines and aminopolycarboxylic acids, which were also examined. The net pressure behavior, normalized salt passage and rejection of TrOCs by LPRO were investigated and compared with ACF operation. In addition, autopsies from the leading and last membrane modules were performed using adenosine triphosphate (ATP), total organic carbon (TOC), ICP-OES and SEM-EDX techniques. Generally, rather stable LPRO membrane performance with limited membrane fouling was observed. TrOCs with a molecular weight of ≥ 150 Da were completely retained by LPRO, while the rejection of di- and trichloro compounds improved as the filtration progressed. ACF also showed significant removal for most of the TrOCs, but without desalination. Accordingly, the ACF and LPRO can be operated in parallel such that the LPRO permeate and the ACF-treated bypass can be mixed to produce drinking water with adjustable hardness and significantly reduced TrOCs.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Reference40 articles.
1. Öffentliche Wasserversorgung und Öffentliche Abwasserentsorgung 2016;Bundesamt,2018
2. Sachverständigengutachten: Definition und Bewertung von Trinkwasserrelevanten Chemikalien im Rahmen der REACHVerordnung und Empfehlungen zum Screening nach Potentiell Kritischen Substanzen;Kuhlmann,2010
3. Assessment of Persistence, Mobility and Toxicity (PMT) of 167 REACH Registered Substances;Berger,2018
4. Granular Activated Carbon Adsorption in Physicochemical Treatment Processes,2005
5. Adsorption;Hobby,2004
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献