A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors

Author:

Tran Mai Lien1,Nguyen Chi Hieu1,Chu Kuan-Yan2,Juang Ruey-Shin234ORCID

Affiliation:

1. Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

2. Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan

3. Department of Internal Medicine, Division of Nephrology, Chang Gung Memorial Hospital Linkou, Taoyuan 33305, Taiwan

4. Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan

Abstract

The absorption of CO2 from CO2-N2 gas mixtures using water and monoethanolamine (MEA) solution in polypropylene (PP) hollow-fiber membrane contactors was experimentally and theoretically examined. Gas was flowed through the lumen of the module, whereas the absorbent liquid was passed counter-currently across the shell. Experiments were carried out under various gas- and liquid-phase velocities as well as MEA concentrations. The effect of pressure difference between the gas and liquid phases on the flux of CO2 absorption in the range of 15–85 kPa was also investigated. A simplified mass balance model that considers non-wetting mode as well as adopts the overall mass-transfer coefficient evaluated from absorption experiments was proposed to follow the present physical and chemical absorption processes. This simplified model allowed us to predict the effective length of the fiber for CO2 absorption, which is crucial in selecting and designing membrane contactors for this purpose. Finally, the significance of membrane wetting could be highlighted by this model while using high concentrations of MEA in the chemical absorption process.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3