Abstract
The pathogenic variant of the TAZ gene is directly associated with Barth syndrome. Because tafazzin in the mitochondria is responsible for cardiolipin (CL) remodeling, all molecules related to the metabolism of CL can affect or be affected by TAZ mutation. In this study, we intend to recover the distortion of the mitochondrial lipid composition, especially CL, for Barth syndrome treatment. The genetically edited TAZ knockout HAP1 cells were demonstrated to be a suitable cellular model, where CL desaturation occurred and monolyso-CL (MLCL) was accumulated. From the species analysis by mass spectrometry, phosphatidylethanolamine showed changed species content after TAZ knockout. TAZ knockout also caused genetic down-regulation of PGS gene and up-regulation of PNPLA8 gene, which may decrease the biosynthesis of CLs and increase the hydrolysis product MLCL. Supplemented phosphatidylglycerol(18:1)2 (PG(18:1)2) was successfully biosynthesized to mature symmetrical CL and drastically decrease the concentration of MLCL to recover the morphology of mitochondria and the cristae shape of inner mitochondria. Newly synthesized mature CL may induce the down-regulation of PLA2G6 and PNPLA8 genes to potentially decrease MLCL production. The excess supplemented PG was further metabolized into phosphatidylcholine and phosphatidylethanolamine.
Funder
Ministry of Science and Technology, Taiwan
Slovak Academy of Sciences
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献