Abstract
The quality assurance of hydrogen fuel for mobile applications is assessed by the guidelines and directives given in the European and international standards. However, the presence of impurities in the hydrogen fuel, in particular nitrogen, water, and oxygen, is experienced in several refueling stations. Within this work, metal-organic framework (MOF)-based membranes are investigated as a fine-purification stage of the hydrogen fuel. Three H2/N2 concentrations have been used to analyze the separation factor of UiO-66-NH2 membranes prepared using the layer-by-layer (LBL) and the one-pot (OP) synthesis methods. It is shown that the separation factor for an equimolar ratio is 14.4% higher for the LBL sample compared to the OP membrane, suggesting a higher orientation and continuity of the LBL surface-supported metal-organic framework (SURMOF). Using an equimolar ratio of H2/N2, it is shown that selective separation of hydrogen over nitrogen occurs with a separation factor of 3.02 and 2.64 for the SURMOF and MOF membrane, respectively. To the best of our knowledge, this is the highest reported performance for a single-phase UiO-66-NH2 membrane. For higher hydrogen concentrations, the separation factor decreases due to reduced interactions between pore walls and N2 molecules.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Reference58 articles.
1. Final Report of the High-Level Panel of the European Decarbonisation Pathways Initiative,2018
2. International Hydrogen Fueling Stationshttps://h2tools.org/hyarc/hydrogen-data/international-hydrogen-fueling-stations
3. Hydrogen Fuel Quality—Product Specification,2019
4. Development of an Electrochemical Hydrogen Contaminant Detector
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献