Rejection Capacity of Nanofiltration Membranes for Nickel, Copper, Silver and Palladium at Various Oxidation States

Author:

Thabo Brooms,Okoli Bamidele JosephORCID,Modise Sekomeng JohannesORCID,Nelana Simphiwe

Abstract

Electroplating and metalworking industries produce enormous amounts of waste containing heavy metals in their effluents, leading to potential threats to biotic and abiotic life. According to regulation, heavy metal contamination must be kept within the regulated standard of a few parts per million, which has led to a recent pique in interest in the utilization of nanofiltration technology for metal recovery. The effect of feed pH, pressure, metal concentration, and oxidation of metal on the rejection of heavy metal ions using three commercial nanofiltration membranes (NF, NF90, and NF270) were explored. To begin, studies of electrolyte salts, contact angle, and water permeability were employed to characterize the nanofiltration membranes. A dead-end module was used to test the permeation and retention capacities of the nanofiltration membranes. The results showed an increase in salt rejection for all metals examined irrespective of the membrane, at a pH below the isoelectric point. For divalent cations, the NF90 membrane achieved recovery capacities of 97% and 85% at 200 ppm and 20 ppm respectively, as compared to the recovery observed for Ni2+, Cu2+, and Pd2+ ions by NF and NF270. At a pH 2, 20 ppm and 5 bar, the NF90 membrane had the highest percent recovery, but at a pH 3, the recovery was at 95%. Mono and divalent stable Ag+ and Ni2+ ions showed a comparatively high percent recovery as compared to Pd2+ and Cu2+, which have high molecular weight and charge effect. In the presence of chelating agents, the membrane surface area is increased, resulting in high divalent ion recovery capacities due to favourable interaction with the polyamide functional group of the membranes. This study establishes the significance of oxidation in high removal efficiency cation in varying experimental conditions.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3