Performance Comparison of Cross- and Forward-Flow Configurations for Multiple-Effect Vacuum Membrane Distillation

Author:

Najib Abdullah,Al-Ansary Hany,Orfi JamelORCID,Ali Emad,Almehmadi Fahad AwjahORCID

Abstract

This work addresses retrofitting the infrastructure of multiple-effect vacuum membrane distillation (V-MEMD) units by using cross-flow configuration (CFC). In this configuration, the feed water is evenly divided and distributed over the effects. In this case, the feed water stream for each effect is kept at a high temperature and low flow rate. This will lead to an increase in the vapor pressure gradient across the hydrophobic membrane and can also maintain the thermal energy of the stream inside the individual effect. It is found that CFC improves internal and global performance indicators of productivity, energy, and exergy. A mathematical model was used to investigate the performance of such a modification as compared to the forward-flow configuration (FFC). The cross-flow configuration led to a clear improvement in the internal performance indicators of the V-MEMD unit, where specifically the mass flux, recovery ratio, gain output ratio, and heat recovery factor were increased by 2 to 3 folds. Moreover, all the global performance indicators were also enhanced by almost 2 folds, except for the performance indicators related to the heat pump, which is used to cool the cold water during the operation of the V-MEMD unit. For the heat pump system, the specific electrical energy consumption, SEEC, and the exergy destruction percentage, Ψdes, under the best-operating conditions, were inferior when the feed water flow was less than 159 L/h. This can be attributed to the fact that the heat rejected from the heat pump system is not fully harnessed.

Funder

king saud university

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3