Interaction of Quercetin, Cyanidin, and Their O-Glucosides with Planar Lipid Models: Implications for Their Biological Effects

Author:

Meleleo Daniela1ORCID,Avato Pinarosa2ORCID,Conforti Filomena3ORCID,Argentieri Maria Pia2ORCID,Messina Giovanni4ORCID,Cibelli Giuseppe4,Mallamaci Rosanna5ORCID

Affiliation:

1. Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy

2. Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy

3. Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy

4. Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy

5. Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy

Abstract

Flavonoids are specialized metabolites produced by plants, as free aglycones or as glycosylated derivatives, which are particularly endowed with a variety of beneficial health properties. The antioxidant, anti-inflammatory, antimicrobial, anticancer, antifungal, antiviral, anti-Alzheimer’s, anti-obesity, antidiabetic, and antihypertensive effects of flavonoids are now known. These bioactive phytochemicals have been shown to act on different molecular targets in cells including the plasma membrane. Due to their polyhydroxylated structure, lipophilicity, and planar conformation, they can either bind at the bilayer interface or interact with the hydrophobic fatty acid tails of the membrane. The interaction of quercetin, cyanidin, and their O-glucosides with planar lipid membranes (PLMs) similar in composition to those of the intestine was monitored using an electrophysiological approach. The obtained results show that the tested flavonoids interact with PLM and form conductive units. The modality of interaction with the lipids of the bilayer and the alteration of the biophysical parameters of PLMs induced by the tested substances provided information on their location in the membrane, helping to elucidate the mechanism of action which underlies some pharmacological properties of flavonoids. To our knowledge, the interaction of quercetin, cyanidin, and their O-glucosides with PLM surrogates of the intestinal membrane has never been previously monitored.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3