Abstract
In cholinergic synapses, the neurotransmitter acetylcholine (ACh) is rapidly hydrolyzed by esterases to choline and acetic acid (AH). It is believed that this reaction serves the purpose of deactivating ACh once it has exerted its effect on a receptor protein (AChR). The protons liberated in this reaction, however, may by themselves excite the postsynaptic membrane. Herein, we investigated the response of cell membrane models made from phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidic acid (PA) to ACh in the presence and absence of acetylcholinesterase (AChE). Without a catalyst, there were no significant effects of ACh on the membrane state (lateral pressure change ≤0.5 mN/m). In contrast, strong responses were observed in membranes made from PS and PA when ACh was applied in presence of AChE (>5 mN/m). Control experiments demonstrated that this effect was due to the protonation of lipid headgroups, which is maximal at the pK (for PS: pKCOOH≈5.0; for PA: pKHPO4−≈8.5). These findings are physiologically relevant, because both of these lipids are present in postsynaptic membranes. Furthermore, we discussed evidence which suggests that AChR assembles a lipid-protein interface that is proton-sensitive in the vicinity of pH 7.5. Such a membrane could be excited by hydrolysis of micromolar amounts of ACh. Based on these results, we proposed that cholinergic transmission is due to postsynaptic membrane protonation. Our model will be falsified if cholinergic membranes do not respond to acidification.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Reference78 articles.
1. Chemical and Molecular Basis of Nerve Activity;Nachmansohn,1959
2. The Chemical Transmission of Nerve Action (Nobel Lecture);Loewi,1936
3. Biological Sciences: Isolation of the Cholinergic Receptor Protein of Torpedo Electric Tissue
4. Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action;Chang;Arch. Int. Pharmacodyn. Ther.,1963
5. Use of a Snake Venom Toxin to Characterize the Cholinergic Receptor Protein