Novel Pyrrolidinium-Functionalized Styrene-b-ethylene-b-butylene-b-styrene Copolymer Based Anion Exchange Membrane with Flexible Spacers for Water Electrolysis

Author:

Xu Ziqi1ORCID,Delgado Sofia2ORCID,Atanasov Vladimir3ORCID,Morawietz Tobias14,Gago Aldo Saul1ORCID,Friedrich Kaspar Andreas15ORCID

Affiliation:

1. German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

2. Laboratory for Process Engineering, Environmental, Biotechnology and Energy (LEPABE), Faculty of Engineering of University of Porto, Rua Roberto Frias S/n, 4200-465 Porto, Portugal

3. Institute of Chemical Process Engineering, University of Stuttgart, Boeblinger Strasse 78, 70199 Stuttgart, Germany

4. Faculty of Science, Energy and Building Services, Esslingen University of Applied Sciences, Kanalstraße 33, 73728 Esslingen am Neckar, Germany

5. Institute of Building Energetics, Thermal Engineering and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 6, 70569 Stuttgart, Germany

Abstract

Anion exchange membranes (AEM) are core components for alkaline electrochemical energy technologies, such as water electrolysis and fuel cells. They are regarded as promising alternatives for proton exchange membranes (PEM) due to the possibility of using platinum group metal (PGM)-free electrocatalysts. However, their chemical stability and conductivity are still of great concern, which is appearing to be a major challenge for developing AEM-based energy systems. Herein, we highlight an AEM with styrene-b-ethylene-b-butylene-b-styrene copolymer (SEBS) as a backbone and pyrrolidinium or piperidinium functional groups tethered on flexible ethylene oxide spacer side-chains (SEBS-Py2O6). This membrane reached 27.8 mS cm−1 hydroxide ion conductivity at room temperature, which is higher compared to previously obtained piperidinium-functionalized SEBS reaching up to 10.09 mS cm−1. The SEBS-Py206 combined with PGM-free electrodes in an AWE water electrolysis (AEMWE) cell achieves 520 mA cm−2 at 2 V in 0.1 M KOH and 171 mA cm−2 in ultra-pure water (UPW). This high performance indicates that SEBS-Py2O6 membranes are suitable for application in water electrolysis.

Funder

EU project NEWELY

Chinese Scholarship Council

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3