Simulation Study on Direct Contact Membrane Distillation Modules for High-Concentration NaCl Solution

Author:

Ni Weiming,Li Yongli,Zhao Juezhen,Zhang Gaoyuan,Du XiaozeORCID,Dong YingchaoORCID

Abstract

Membrane distillation technology, as a new membrane-based water treatment technology that combines the membrane technology and evaporation process, has the advantages of using low-grade heat, working at atmospheric pressure with simple configuration, etc. In this study, heat and mass transfer were coupled at the membrane surfaces through the user-defined function program. The effects of feed temperature, feed velocity and permeate velocity on temperature polarization were mainly investigated for a high-concentration NaCl solution. The temperature polarization was increased with the increase of feed temperature and the decrease of feed and permeate velocity. The effects of temperature, inlet velocity and solution concentration on the evaporation efficiency of the membrane module for co- and counter-current operations were investigated in detail. The counter-current operation performed better than co-current operation in most cases, except for the condition where the NaCl concentration was relatively low or the module length was long enough. In addition, the optimal membrane thickness for both PVDF and PTFE was studied. The optimal membrane thickness was found in the range of 10 to 20 μm, which corresponded to the highest permeate flux for the selected materials, pore size distribution, and operation conditions. Membrane material with lower thermal conductivity and larger porosity was prone to get higher permeate flux and had larger optimal membrane thickness. Increasing feed velocity or feed temperature could decrease the optimal membrane thickness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3