Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches

Author:

Uzdenova Aminat1ORCID

Affiliation:

1. Department of Computer Science and Computational Mathematics, Umar Aliev Karachai-Cherkess State University, Karachaevsk 369200, Russia

Abstract

For a theoretical analysis of mass transfer processes in electromembrane systems, the Nernst–Planck and Poisson equations (NPP) are generally used. In the case of 1D direct-current-mode modelling, a fixed potential (for example, zero) is set on one of the boundaries of the considered region, and on the other—a condition connecting the spatial derivative of the potential and the given current density. Therefore, in the approach based on the system of NPP equations, the accuracy of the solution is significantly affected by the accuracy of calculating the concentration and potential fields at this boundary. This article proposes a new approach to the description of the direct current mode in electromembrane systems, which does not require boundary conditions on the derivative of the potential. The essence of the approach is to replace the Poisson equation in the NPP system with the equation for the displacement current (NPD). Based on the system of NPD equations, the concentration profiles and the electric field were calculated in the depleted diffusion layer near the ion-exchange membrane, as well as in the cross section of the desalination channel under the direct current passage. The NPD system, as well as NPP, allows one to describe the formation of an extended space charge region near the surface of the ion-exchange membrane, which is important for describing overlimiting current modes. Comparison of the direct-current-mode modelling approaches based on NPP and NPD showed that the calculation time is less for the NPP approach, but the calculation accuracy is higher for the NPD approach.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3