On the Ionic Conductivity of Cation Exchange Membranes in Mixed Sulfates Using the Two-Phase Model

Author:

Wu Liansheng1,Jiang Haodong1,Luo Tao1ORCID,Wang Xinlong1

Affiliation:

1. Ministry of Education’s Research Center for Comprehensive Utilization and Clean Process Engineering of Phosphorous Resources, School of Chemical Engineering, Sichuan University, Chengdu 610065, China

Abstract

The concentration dependence of the conductivity of ion exchange membranes (IEMs), as well as other transport properties, has been well explained by the contemporary two-phase model (Zabolotsky et al., 1993) considering a gel phase and an inter-gel phase filled with electroneutral solution. Here, this two-phase model has been adopted and first applied in electrolytes containing mixed counter-ions to investigate the correlation between the membrane ionic conductivity and its microstructure. For three representative commercial cation exchange membranes (CEMs), the total membrane conductivity (κT) when in equilibrium with mixed MgSO4 + Na2SO4 and H2SO4 + Na2SO4 electrolytes could be well predicted with the experimental composition of counter-ions in the gel and inter-gel phase, as well as the counter-ion mobility in the gel phase when the membrane is in a single electrolyte. It is found that the volume fraction of the inter-gel phase (f2) has little impact on the predicted results. The accuracy of the model can be largely improved by calculating the inter-gel phase conductivity (κin) with the ionic mobility being the same as that in the external solution (obtained via simulation in the OLI Studio), rather than simply as equivalent to the conductivity of the external solution (κs). Moreover, a nonlinear correlation between the CEMs’ conductivities and the counter-ion composition in the gel phase is observed in the mixed MgSO4 + Na2SO4 solution, as well as for the Nafion117 membrane in the presence of sulfuric acid. For CEMs in mixed MgSO4 + Na2SO4 electrolytes, the calculated conductivity values considering the interaction parameter σ, similar to the Kohlrausch’s law, are closer to the experimental ones. Overall, this work provides new insights into membrane conductivity with mixed counter-ions and testifies to the applicability of the contemporary two-phase model.

Funder

National Natural Science Foundation of China

Research Funds of Sichuan Province

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference38 articles.

1. A comprehensive review on the synthesis and applications of ion exchange membranes;Jiang;Chemosphere,2021

2. A Review of Nanostructured Ion-Exchange Membranes;Shehzad;Adv. Mater. Technol.,2021

3. Selectivity of ion exchange membranes: A review;Luo;J. Membr. Sci.,2018

4. Structural inhomogeneity of ion-exchange membranes in swelling state and methods of its investigations;Bryk;Khim. Tekhnol. Vody,1989

5. Correlation between transport parameters of ion-exchange membranes;Auclair;J. Membr. Sci.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3