Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System

Author:

Deng BoxinORCID,Neef Tessa,Schroën KarinORCID,de Ruiter JoletORCID

Abstract

Membrane foaming is a promising alternative to conventional foaming methods to produce uniform bubbles. In this study, we provide a fundamental study of a cross-flow membrane foaming (CFMF) system to understand and control bubble formation for various process conditions and fluid properties. Observations with high spatial and temporal resolution allowed us to study bubble formation and bubble coalescence processes simultaneously. Bubble formation time and the snap-off bubble size (D0) were primarily controlled by the continuous phase flow rate (Qc); they decreased as Qc increased, from 1.64 to 0.13 ms and from 125 to 49 µm. Coalescence resulted in an increase in bubble size (Dcoal>D0), which can be strongly reduced by increasing either continuous phase viscosity or protein concentration—factors that only slightly influence D0. Particularly, in a 2.5 wt % whey protein system, coalescence could be suppressed with a coefficient of variation below 20%. The stabilizing effect is ascribed to the convective transport of proteins and the intersection of timescales (i.e., μs to ms) of bubble formation and protein adsorption. Our study provides insights into the membrane foaming process at relevant (micro-) length and time scales and paves the way for its further development and application.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bubble size and foamability: Role of surfactants and hydrodynamic conditions;Current Opinion in Colloid & Interface Science;2024-08

2. Membrane emulsification in integrated systems;Current Trends and Future Developments on (Bio-) Membranes;2024

3. Control of pressurized microbubble generation by multi-channel membranes: Experiments and modeling;Chemical Engineering and Processing - Process Intensification;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3