Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes

Author:

Selyanchyn RomanORCID,Ariyoshi Miho,Fujikawa Shigenori

Abstract

The effect of thickness in multilayer thin-film composite membranes on gas permeation has received little attention to date, and the gas permeances of the organic polymer membranes are believed to increase by membrane thinning. Moreover, the performance of defect-free layers with known gas permeability can be effectively described using the classical resistance in series models to predict both permeance and selectivity of the composite membrane. In this work, we have investigated the Pebax®-MH1657/PDMS double layer membrane as a selective/gutter layer combination that has the potential to achieve sufficient CO2/N2 selectivity and permeance for efficient CO2 and N2 separation. CO2 and N2 transport through membranes with different thicknesses of two layers has been investigated both experimentally and with the utilization of resistance in series models. Model prediction for permeance/selectivity corresponded perfectly with experimental data for the thicker membranes. Surprisingly, a significant decrease from model predictions was observed when the thickness of the polydimethylsiloxane (PDMS) (gutter layer) became relatively small (below 2 µm thickness). Material properties changed at low thicknesses—surface treatments and influence of porous support are discussed as possible reasons for observed deviations.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3