Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater

Author:

Avornyo Amos1ORCID,Thanigaivelan Arumugham12,Krishnamoorthy Rambabu1ORCID,Hassan Shadi W.12,Banat Fawzi12ORCID

Affiliation:

1. Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates

2. Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates

Abstract

Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m−2 h−1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3