A Contrastive Study of Self-Assembly and Physical Blending Mechanism of TiO2 Blended Polyethersulfone Membranes for Enhanced Humic Acid Removal and Alleviation of Membrane Fouling

Author:

Ahmad Abdul LatifORCID,Che Lah Nuur Fahanis,Norzli Nur Amelia,Pang Wen YuORCID

Abstract

In this study, membrane fabrication was achieved by two different methods: (i) self-assembly and (ii) physical blending of TiO2 in PES membrane for humic acid filtration. The TiO2 nanoparticles were self-assembled by using TBT as the precursor and pluronic F127 as triblock copolymers around the membrane pores. This was achieved by manipulating the hydrolysis and condensation reaction of TBT precursors during the non-solvent induced phase separation (NIPS) process. On the other hand, the TiO2 was physically blended as a comparison to the previous method. The characteristic of the membrane was analysed to explore the possibility of enhancing the membrane antifouling mechanism and the membrane flux. The membrane morphology, pore size, porosity, and contact angle were characterised. Both methods proved to be able to enhance the antifouling properties and flux performance. The HA rejection increased up to 95% with membrane flux 55.40 kg m−2 h−1. The rejection rate was not significantly improved for either method. However, the antifouling characteristic for the self-assembly TiO2/PES membrane was better than the physically blended membrane. This was found to be due to the high surface hydrophilicity of the MM membrane, which repelled the hydrophobic HA and consequently blocked the HA adsorption onto the surface.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3