L-Type Calcium Channel: Predicting Pathogenic/Likely Pathogenic Status for Variants of Uncertain Clinical Significance

Author:

Tarnovskaya Svetlana I.,Kostareva Anna A.ORCID,Zhorov Boris S.

Abstract

(1) Background: Defects in gene CACNA1C, which encodes the pore-forming subunit of the human Cav1.2 channel (hCav1.2), are associated with cardiac disorders such as atrial fibrillation, long QT syndrome, conduction disorders, cardiomyopathies, and congenital heart defects. Clinical manifestations are known only for 12% of CACNA1C missense variants, which are listed in public databases. Bioinformatics approaches can be used to predict the pathogenic/likely pathogenic status for variants of uncertain clinical significance. Choosing a bioinformatics tool and pathogenicity threshold that are optimal for specific protein families increases the reliability of such predictions. (2) Methods and Results: We used databases ClinVar, Humsavar, gnomAD, and Ensembl to compose a dataset of pathogenic/likely pathogenic and benign variants of hCav1.2 and its 20 paralogues: voltage-gated sodium and calcium channels. We further tested the performance of sixteen in silico tools in predicting pathogenic variants. ClinPred demonstrated the best performance, followed by REVEL and MCap. In the subset of 309 uncharacterized variants of hCav1.2, ClinPred predicted the pathogenicity for 188 variants. Among these, 36 variants were also categorized as pathogenic/likely pathogenic in at least one paralogue of hCav1.2. (3) Conclusions: The bioinformatics tool ClinPred and the paralogue annotation method consensually predicted the pathogenic/likely pathogenic status for 36 uncharacterized variants of hCav1.2. An analogous approach can be used to classify missense variants of other calcium channels and novel variants of hCav1.2.

Funder

the Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3