Hydration and Diffusion of H+, Li+, Na+, Cs+ Ions in Cation-Exchange Membranes Based on Polyethylene- and Sulfonated-Grafted Polystyrene Studied by NMR Technique and Ionic Conductivity Measurements

Author:

Volkov Vitaliy I.,Chernyak Alexander V.,Golubenko Daniil V.,Tverskoy Vladimir A.,Lochin Georgiy A.,Odjigaeva Ervena S.,Yaroslavtsev Andrey B.ORCID

Abstract

The main particularities of sulfonate groups hydration, water molecule and alkaline metal cation translation mobility as well as ionic conductivity were revealed by NMR and impedance spectroscopy techniques. Cation-exchange membranes MSC based on cross-linked sulfonated polystyrene (PS) grafted on polyethylene with ion-exchange capacity of 2.5 mg-eq/g were investigated. Alkaline metal cation hydration numbers (h) calculated from temperature dependences of 1H chemical shift of water molecule for membranes equilibrated with water vapor at RH = 95% are 5, 6, and 4 for Li+, Na+, and Cs+ ions, respectively. These values are close to h for equimolar aqueous salt solutions. Water molecules and counter ions Li+, Na+, and Cs+ diffusion coefficients were measured by pulsed field gradient NMR on the 1H, 7Li, 23Na, and 133Cs nuclei. For membranes as well as for aqueous chloride solutions, cation diffusion coefficients increased in the following sequence: Li+ < Na+ < Cs+. Cation and water molecule diffusion activation energies in temperature range from 20 °C to 80 °C were close to each other (about 20 kJ/mol). The cation conductivity of MSC membranes is in the same sequence, Li+ < Na+ < Cs+ << H+. The conductivity values calculated from the NMR diffusion coefficients with the use of the Nernst–Einstein equation are essentially higher than experimentally determined coefficients. The reason for this discrepancy is the heterogeneity of membrane pore and channel system. Ionic conductivity is limited by cation transfer in narrow channels, whereas the diffusion coefficient characterizes ion mobility in wide pores first of all.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3