Thermodynamic Modeling and Performance Analysis of Vehicular High-Temperature Proton Exchange Membrane Fuel Cell System

Author:

Li YanjuORCID,Li DongxuORCID,Ma ZheshuORCID,Zheng Meng,Lu Zhanghao

Abstract

Since the high temperature proton exchange membrane fuel cells (HT-PEMFC) stack require a range of auxiliary equipments to maintain operating conditions, it is necessary to consider operation of related components in the design of HT-PEMFC systems. In this paper, a thermodynamic model of a vehicular HT-PEMFC system using phosphoric acid doped polybenzimidazole membrane is developed. The power distribution and exergy loss of each component are derived according to thermodynamic analysis, where the stack and heat exchanger are the two components with the greatest exergy loss. In addition, ecological functions and improvement potentials are proposed to evaluate the system performance better. On this basis, the effects of stack inlet temperature, pressure, and stoichiometric on system performance are analyzed. The results showed that the energy efficiency, exergy efficiency and net output power of the system achieved the maximum when the inlet gases temperature is 406.1 K. The system performance is better when the cathode inlet pressure is relatively low and the anode inlet pressure is relatively high. Moreover, the stoichiometry should be reduced to improve the system output performance on the basis of ensuring sufficient gases reaction in the stack.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference84 articles.

1. Toward sustainable fuel cells

2. Techno-economic evaluation for hybrid renewable energy system: Application and merits

3. Review on sustainable development of forest-based biodiesel;Liu;J. Nanjing For. Univ. Nat. Sci. Ed.,2020

4. Catalytic cracking of soybean oil via a distillation process for renewable liquid fuel;Chen;J. Nanjing For. Univ. Nat. Sci. Ed.,2011

5. Research trends and future key issues of global harvested wood products carbon science;Yang;J. Nanjing For. Univ. Nat. Sci. Ed.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3