Affiliation:
1. Chemical Engineering Department, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
2. Chemical and Environmental Engineering Department, Polytechnic University of Cartagena, 30206 Cartagena, Spain
Abstract
The removal of three emerging pollutants: carbamazepine, ketoprofen, and bisphenol A, has been studied using the nanofiltration flat sheet membrane NF99HF. The removal efficiencies of the membrane have been evaluated by two system characteristic parameters: permeate flux and rejection coefficient. The influence of two operating variables has been analysed: operating pressure and feed concentration. Before and after the tests with emerging pollutants, the membrane has been characterized by determining its water permeability coefficient and its magnesium chloride rejection coefficient to find out if the removal of emerging pollutants causes membrane fouling. The results show that operating pressure has significant separation effects, obtaining the highest efficiencies at a pressure of 20 bar for pollutant concentrations between 5 and 25 mg/L. Moreover, rejection of ketoprofen was found to be dependent on electrostatic repulsion, while rejection of bisphenol A was significantly affected by adsorption onto the membrane. Finally, the experimental data have been fitted to the solution diffusion model and to the simplified model of Spiegler-Kedem-Katchalsky to predict the behaviour of the nanofiltration membrane in the removal of the tested pollutants. Good agreement between the experimental and predicted carbamazepine and bisphenol A data has been obtained with each model, respectively.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献