Comparison between Lipase Performance Distributed at the O/W Interface by Membrane Emulsification and by Mechanical Stirring

Author:

Piacentini EmmaORCID,Mazzei RosalindaORCID,Giorno LidiettaORCID

Abstract

Multiphase bioreactors using interfacial biocatalysts are unique tools in life sciences such as pharmaceutical and biotechnology. In such systems, the formation of microdroplets promotes the mass transfer of reagents between two different phases, and the reaction occurs at the liquid–liquid interface. Membrane emulsification is a technique with unique properties in terms of precise manufacturing of emulsion droplets in mild operative conditions suitable to preserve the stability of bioactive labile components. In the present work, membrane emulsification technology was used for the production of a microstructured emulsion bioreactor using lipase as a catalyst and as a surfactant at the same time. An emulsion bioreaction system was also prepared by the stirring method. The kinetic resolution of (S,R)-naproxen methyl ester catalyzed by the lipase from Candida rugosa to obtain (S)-naproxen acid was used as a model reaction. The catalytic performance of the enzyme in the emulsion systems formulated with the two methods was evaluated in a stirred tank reactor and compared. Lipase showed maximum enantioselectivity (100%) and conversion in the hydrolysis of (S)-naproxen methyl ester when the membrane emulsification technique was used for biocatalytic microdroplets production. Moreover, the controlled formulation of uniform and stable droplets permitted the evaluation of lipase amount distributed at the interface and therefore the evaluation of enzyme specific activity as well as the estimation of the hydrodynamic radius of the enzyme at the oil/water (o/w) interface in its maximum enantioselectivity.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3