Fabrication of PES Modified by TiO2/Na2Ti3O7 Nanocomposite Mixed-Matrix Woven Membrane for Enhanced Performance of Forward Osmosis: Influence of Membrane Orientation and Feed Solutions

Author:

Al-Senani Ghadah M.1ORCID,Nasr Mervat23ORCID,Zayed Mohamed2ORCID,Ali Sahar S.4,Alshaikh Hind5ORCID,Abd El-Salam Hanafy M.3,Shaban Mohamed26ORCID

Affiliation:

1. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt

3. Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt

4. Chemical Engineering and Pilot-Plant Department, National Research Center, Dokki, Cairo 12622, Egypt

5. Chemistry Department, Science and Arts College, Rabigh Campus, King Abdulaziz University, P.O. Box 344, Jeddah 21911, Saudi Arabia

6. Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia

Abstract

Water treatment is regarded as one of the essential elements of sustainability. To lower the cost of treatment, the wastewater volume is reduced via the osmotic process. Here, mixed-matrix woven forward osmosis (MMWFO) PES membranes modified by a TiO2/Na2Ti3O7 (TNT) nanocomposite were fabricated for treating water from different sources. Various techniques were used to characterize the TNT nanocomposite. The crystal structure of TNT is a mix of monoclinic Na2Ti3O7 and anorthic TiO2 with a preferred orientation of (2−11). The SEM image shows that the surface morphology of the TNT nanocomposite is a forked nano-fur with varying sizes regularly distributed throughout the sample. The impact of TNT wt.% on membrane surface morphologies, functional groups, hydrophilicity, and performance was investigated. Additionally, using distilled water (DW) as the feed solution (FS), the effects of various NaCl concentrations, draw solutions, and membrane orientations on the performance of the mixed-matrix membranes were tested. Different water samples obtained from various sources were treated as the FS using the optimized PES/TNT (0.01 wt.%) MMWFO membrane. Using textile effluent as the FS, the impact of various NaCl DS concentrations on the permeated water volume was investigated. The results show that the MMWFO membrane generated with the TNT nanocomposite at a 0.01 wt.% ratio performed better in FO mode. After 30 min of use with 1 M NaCl and various sources of water as the FS, the optimized MMWFO membrane provided a steady water flow and exhibited antifouling behavior. DW performed better than other water types whenever it was used owing to its greater flow (136 LMH) and volume reduction (52%). Tap water (TW), textile industrial wastewater (TIWW), gray water (GW), and municipal wastewater (MW) showed volume reductions of 41%, 34%, 33%, and 31.9%, respectively. Additionally, when utilizing NaCl as the DS and TIWW as the FS, 1 M NaCl resulted in more permeated water than 0.25 M and 0.5 M, yet a higher volume reduction of 41% was obtained.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3