Softening with Ceramic Micro-Filtration for Application on Water Reclamation for Industrial Recirculating Cooling Systems

Author:

Gulamussen Noor JehanORCID,Donse Daniël,Arsénio André MarquesORCID,Heijman Sebastiaan Gerard JozefORCID,Rietveld Louis Cornelis

Abstract

There is a global need for optimizing the use of water that has resulted from increased demand due to industrial development, population growth, climate change and the pollution of natural water resources. One of the solutions is to use reclaimed water in industrial applications that do not require water of potable quality, such as cooling water. However, for cooling water, (treated) wastewater’s hardness is too high, apart from having a high load of suspended solids and organic matter. Therefore, a combination of softening with ceramic micro-filtration was proposed for treating wastewater treatment effluent containing fouling agents for potential use in industrial cooling systems. The effectiveness of the softening process on model-treated wastewater with calcium hydroxide in the presence of phosphate and sodium alginate was first evaluated using jar tests. Furthermore, membrane fouling was studied when filtering the softened water. The results showed that the inhibition of calcium carbonate precipitation occurred when inorganic substances, such as phosphate and organic compounds, were present in the water. The fouling of the membranes due to sodium alginate in water was only slightly negatively affected when combined with softening and phosphate. Therefore, this combination of treatments could be potentially helpful for the post-treatment of secondary effluent for cooling systems.

Funder

Dutch Research Council

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference47 articles.

1. Water reclamation for industrial use in sub-Saharan Africa – a critical review

2. Economic Valuation of Wastewater: The Cost of Action and the Cost of No Action,2015

3. Analysis of Alternative Sources of Cooling Water;Ehrhardt,1986

4. Use of Alternate Water Sources for Power Plant Cooling;Difilippo,2008

5. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3