Self-Standing, Ultrasonic Spray-Deposited Membranes for Fuel Cells

Author:

Karaca Ali1,Galkina Irina1,Sohn Yoo Jung2ORCID,Wippermann Klaus1,Scheepers Fabian1ORCID,Glüsen Andreas1ORCID,Shviro Meital1ORCID,Müller Martin1,Carmo Marcelo1,Stolten Detlef34

Affiliation:

1. Institute of Energy and Climate Research (IEK-14): Electrochemical Process Engineering, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

2. Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

3. Institute of Energy and Climate Research (IEK-3): Techno-Economic Systems Analysis, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

4. Chair for Fuel Cells, RWTH Aachen University, 52072 Aachen, Germany

Abstract

The polymer electrolyte membrane and its contact with electrodes has a significant effect on the performance of fuel and electrolysis cells but the choice of commercially available membranes is limited. In this study, membranes for direct methanol fuel cells (DMFCs) were made by ultrasonic spray deposition from commercial Nafion solution; the effect of the drying temperature and presence of high boiling solvents on the membrane properties was then analyzed. When choosing suitable conditions, membranes with similar conductivity, water uptake, and higher crystallinity than comparable commercial membranes can be obtained. These show similar or superior performance in DMFC operation compared to commercial Nafion 115. Furthermore, they exhibit low permeability for hydrogen, which makes them attractive for electrolysis or hydrogen fuel cells. The findings from our work will allow for the adjustment of membrane properties to the specific requirements of fuel cells or water electrolysis, as well as the inclusion of additional functional components for composite membranes.

Funder

Bundesministerium für Wirtschaft und Energie

Open-Access-Publikationskosten

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3