Directly Using Ti3C2Tx MXene for a Solid-Contact Potentiometric pH Sensor toward Wearable Sweat pH Monitoring

Author:

Liang Rongfeng1,Zhong Lijie1,Zhang Yirong1,Tang Yitian1,Lai Meixue1,Han Tingting1,Wang Wei1,Bao Yu1,Ma Yingming1,Gan Shiyu1ORCID,Niu Li1ORCID

Affiliation:

1. Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

The level of hydrogen ions in sweat is one of the most important physiological indexes for the health state of the human body. As a type of two-dimensional (2D) material, MXene has the advantages of superior electrical conductivity, a large surface area, and rich functional groups on the surface. Herein, we report a type of Ti3C2Tx-based potentiometric pH sensor for wearable sweat pH analysis. The Ti3C2Tx was prepared by two etching methods, including a mild LiF/HCl mixture and HF solution, which was directly used as the pH-sensitive materials. Both etched Ti3C2Tx showed a typical lamellar structure and exhibited enhanced potentiometric pH responses compared with a pristine precursor of Ti3AlC2. The HF-Ti3C2Tx disclosed the sensitivities of −43.51 ± 0.53 mV pH–1 (pH 1–11) and −42.73 ± 0.61 mV pH–1 (pH 11–1). A series of electrochemical tests demonstrated that HF-Ti3C2Tx exhibited better analytical performances, including sensitivity, selectivity, and reversibility, owing to deep etching. The HF-Ti3C2Tx was thus further fabricated as a flexible potentiometric pH sensor by virtue of its 2D characteristic. Upon integrating with a solid-contact Ag/AgCl reference electrode, the flexible sensor realized real-time monitoring of pH level in human sweat. The result disclosed a relatively stable pH value of ~6.5 after perspiration, which was consistent with the ex situ sweat pH test. This work offers a type of MXene-based potentiometric pH sensor for wearable sweat pH monitoring.

Funder

National Natural Science Foundation of China

Science and Technology Research Project of Guangzhou

Department of Science and Technology of Guangdong Province

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference48 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3