Production of Drinking Water with Membranes with Simultaneous Utilization of Concentrate and Reject Effluent after Sludge Dewatering

Author:

Pervov Alexei1,Spitsov Dmitry1

Affiliation:

1. Department of Water Supply, Moscow State University of Civil Engineering, 26, Yaroslaskoye Highway, 129337 Moscow, Russia

Abstract

A new technology is described that enables us to completely exclude liquid discharges during production of drinking water from surface sources. The proposed described technological scheme separates the natural water into a stream of purified drinking water and dewatered sludge. The sludge moisture has a value of 80 percent. The experimental program is described to treat the natural water with nanofiltration membranes and to produce a drinking-quality water with recovery value of 0.99 and higher. Concentrate of membrane plant is mixed with the wet sludge and the reject effluent after sludge dewatering is again treated by reverse osmosis membranes and returned back to the sludge thickening tank. Results of experiments to treat reject water after sludge dewatering are presented. The use of nanofiltration membranes provides reduction in the Total Dissolved Solids content (TDS), aluminum, color and oxidation to meet drinking water standards. Experimental plots are presented that can be used to select membrane characteristics and to predict product water chemical composition at each stage of the membrane treatment scheme. Concentrate of membrane treatment plant is mixed with the wet sludge in the thickening tank. The sludge, after the thickening tank, is dewatered using either filter-press or centrifugal equipment. The reject (or fugate), after sludge dewatering, is treated by membrane facility to separate it into deionized water stream and concentrate stream. The deionized water can be mixed with the feed water or drinking water and the concentrate stream is returned back to the thickening tank. Thus, the salt balance is maintained in the thickening tank, whereby all dissolved salts and impurities that are rejected by membranes are collected in the thickening tank, and then are withdrawn together with the dewatered sludge. Based on the results of experimental data processing, balance diagrams of the sludge dehydration process with waste water purification at the membrane plant and with the addition of the membrane plant concentrate to the sludge thickener are presented, according to which all contaminants removed by the membranes are removed together with the sludge.

Funder

Ministry of Science and Higher Education of Russian Federation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3