Fabrication of Anatase TiO2/PVDF Composite Membrane for Oil-in-Water Emulsion Separation and Dye Photocatalytic Degradation

Author:

Li Chengcai1,Yu Hewei1,Huang Biao1,Liu Guojin12,Guo Yuhai13,Zhu Hailin12,Yu Bin1

Affiliation:

1. Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China

3. Zhejiang Sci-Tech University Huzhou Research Institute Co., Ltd., Huzhou 313000, China

Abstract

At present, the types of pollutants in wastewater are more and more complicated, however, the multifunctional membrane materials are in short supply. To prepare a membrane with both high efficient oil-in-water emulsion separation performance and photocatalytic degradation performance of organic dyes, the bifunctional separation membrane was successfully prepared by electrostatic spinning technology of PVDF/PEMA and in situ deposition of anatase TiO2 nanoparticles containing Ti3+ and oxygen vacancies (Ov). The prepared composite membrane has excellent hydrophilic properties (WCA = 15.65), underwater oleophobic properties (UOCA = 156.69), and photocatalytic performance. These composite membranes have high separation efficiency and outstanding anti-fouling performance, the oil removal efficiency reaches 98.95%, and the flux recovery rate (FRR) reaches 99.19% for soybean oil-in-water emulsion. In addition, the composite membrane has outstanding photocatalytic degradation performance, with 97% and 90.2% degradation of RhB and AG-25 under UV conditions, respectively. Several oil-in-water separation and dye degradation experiments show that the PVDF composite membrane has excellent reuse performance. Based on these results, this study opens new avenues for the preparation of multifunctional reusable membranes for the water treatment field.

Funder

National Key Research and Development Program of China

Fund for the Research Start-up Fund project of Zhejiang Sci-Tech University

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3