Poly(styrene-co-butadiene)/Maghnia-Organo-Montmorillonite Clay Nanocomposite. Preparation, Properties and Application as Membrane in the Separation of Methanol/Toluene Azeotropic Mixture by Pervaporation

Author:

Allel Amina,Benguergoura Hassiba,Naceur Mohamed Wahib,Ledoux AlainORCID,Saeed Waseem SharafORCID,Aouak Taïeb

Abstract

In order to improve the thermal and mechanical properties of poly(styrene-co-butadiene) (SBR) to use it as a pervaporation membrane in the separation of the azeotropic mixture toluene/methanol, poly(styrene-co-butadiene) crosslinked Maghnia-organo-montmonrillonite (CSBR/OMMT), a nanocomposite of different compositions was first prepared by a solvent casting method. SBR was crosslinked in situ in the presence of OMMT nanoparticles by an efficient vulcanization technique using sulfur as a crosslinking agent and zinc diethyldithiocarbamate as a catalyst. The structure and morphology of the hybrid materials obtained were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscope analysis. The thermal properties of these hybrid materials were studied by differential scanning calorimetry and thermogravimetric analysis/thermal differential analysis. The mechanical properties were studied by strength measurements. The results obtained occurred when the OMMT was incorporated in the CSBR matrix; a significant increase in the glass transition temperature of the SBR was observed which passed from −27 °C for virgin SBR to −21.5 °C for that containing 12 wt% of OMMT. The addition of OMMT nanoparticles to CSBR also improved the mechanical properties of this copolymer. When the OMMT content in the CSBR varied from 0 to 15% by weight, the tensile strength, the elongation at the nose and the modulus at 100% elongation increased from 3.45 to 6.25 MPa, from 162, 17 to 347.20% and 1.75 to 3.0 MPa, respectively. The results of pervaporation revealed that when the OMMT content varied between 3% and 12%, a significant increase in the total flux, the separation factor and the separation index by pervaporation increased from 260.67 to g m−2 h−1, 0.31 to 1.43, and 0.47 to 113.81 g m−2 h−1, respectively.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3