Efficient Helium Separation with Two-Dimensional Metal–Organic Framework Fe/Ni-PTC: A Theoretical Study

Author:

Wang Jingyuan,Li YixiangORCID,Yang Yanmei,Li Yongqiang,Zhao MingwenORCID,Li Weifeng,Guan Jing,Qu YuanyuanORCID

Abstract

Helium (He) is one of the indispensable and rare strategic materials for national defense and high-tech industries. However, daunting challenges have to be overcome for the supply shortage of He resources. Benefitted from the wide pore size distribution, sufficient intrinsic porosity, and high specific surface area, metal–organic framework (MOF) materials are prospective candidates for He purification in the membrane-based separation technology. In this work, through first-principles calculations and molecular dynamics (MD) simulations, we studied the permeability and filtration performance of He by the newly synthesized two-dimensional Fe-PTC MOF and its analogue Ni-PTC MOF. We found that both Fe-PTC and Ni-PTC have superior high performance for He separation. The selectivity of He over N2 was calculated to be ~1017 for Fe-PTC and ~1015 for Ni-PTC, respectively, both higher than most of the previously proposed 2D porous membranes. Meanwhile, high He permeance (10−4~10−3 mol s−1 m−2 Pa−1) can be obtained for the Fe/Ni-PTC MOF for temperatures ranging from 200 to 500 K. Therefore, the present study offers a highly prospective membrane for He separation, which has great potential in industrial application.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3