A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification

Author:

Rostovtseva Valeriia,Faykov Ilya,Pulyalina AlexandraORCID

Abstract

Ethylene glycol (EG) is an essential reagent in the chemical industry including polyester and antifreeze manufacture. In view of the constantly expanding field of EG applications, the search for and implementation of novel economical and environmentally friendly technologies for the separation of organic and aqueous–organic solutions remain an issue. Pervaporation is currently known to significantly reduce the energy and resource consumption of a manufacturer when obtaining high-purity components using automatic, easily scalable, and compact equipment. This review provides an overview of the current research and advances in the pervaporation of EG-containing mixtures (water/EG and methanol/EG), as well as a detailed analysis of the relationship of pervaporation performance with the membrane structure and properties of membrane materials. It is discussed that a controlled change in the structure and transport properties of a membrane is possible using modification methods such as treatment with organic solvents, introduction of nonvolatile additives, polymer blending, crosslinking, and heat treatment. The use of various modifiers is also described, and a particularly positive effect of membrane modification on the separation selectivity is highlighted. Among various polymers, hydrophilic PVA-based membranes stand out for optimal transport properties that they offer for EG dehydrating. Fabricating of TFC membranes with a microporous support layer appears to be a viable approach to the development of productivity without selectivity loss. Special attention is given to the recovery of methanol from EG, including extensive studies of the separation performance of polymer membranes. Membranes based on a CS/PVP blend with inorganic modifiers are specifically promising for methanol removal. With regard to polymer wettability properties, it is worth mentioning that membranes based on hydrophobic polymers (e.g., SPEEK, PBI/PEI, PEC, PPO) are capable of exhibiting much higher selectivity due to diffusion limitations.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3