Low-Molecular-Weight Lignin Recovery with Nanofiltration in the Kraft Pulping Process

Author:

Battestini Vives MarionaORCID,Thuvander Johan,Arkell Anders,Lipnizki FrankORCID

Abstract

Kraft lignin is an underutilized resource from the pulp and paper industry with the potential of being a key raw material for renewable fuels and chemicals. The separation of high-molecular-weight lignin from black liquor by ultrafiltration has been widely investigated, while the permeate containing low-molecular-weight lignin has received little attention. Nanofiltration can concentrate the low-molecular-weight lignin. This work, therefore, evaluates nanofiltration for the separation and concentration of low-molecular-weight lignin from the ultrafiltration permeate. For this study, eight flat polymeric sheet membranes and one polymeric hollow fiber membrane, with molecular weight cut-offs ranging from 100 to 2000 Da, were tested. A parametric study was conducted at 50 °C, 2.5–35 bar, and crossflow velocity of 0.3–0.5 m/s. At a transmembrane pressure of 35 bar, the best performing membranes were NF090801, with 90% lignin retention and 37 L/m2·h, and SelRO MPF-36, with 84% lignin retention and 72 L/m2·h. The other membranes showed either very high lignin retention with a very low flux or a high flux with retention lower than 80%. Concentration studies were performed with the two selected membranes at conditions (A) 50 °C and 35 bar and (B) 70 °C and 15 bar. The NF090801 membrane had the highest flux and lignin retention during the concentration studies. Overall, it was shown that the nanofiltration process is able to produce a concentrated lignin fraction, which can be either used to produce valuable chemicals or used to make lignin oil.

Funder

Swedish Energy Agency

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3