Abstract
By using the recently generalized version of Newton’s shell theorem, analytical equations are derived to calculate the electric interaction energy between two separated, charged spheres surrounded outside and inside by electrolyte. This electric interaction energy is calculated as a function of the electrolyte’s ion concentration, temperature, distance between the spheres and size of the spheres. At the same distance between the spheres, the absolute value of the interaction energy decreases with increasing electrolyte ion concentration and increases with increasing temperature. At zero electrolyte ion concentration, the derived analytical equation transforms into the Coulomb Equation Finally, the analytical equation is generalized to calculate the electric interaction energy of N separated, charged spheres surrounded by electrolyte.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology