Abstract
Separating and capturing small amounts of CH4 or H2 from a mixture of gases, such as coal mine spent air, at a large scale remains a great challenge. We used large-scale computational screening and machine learning (ML) to simulate and explore the adsorption, diffusion, and permeation properties of 6013 computation-ready experimental metal–organic framework (MOF) adsorbents and MOF membranes (MOFMs) for capturing clean energy gases (CH4 and H2) in air. First, we modeled the relationships between the adsorption and the MOF membrane performance indicators and their characteristic descriptors. Among three ML algorithms, the random forest was found to have the best prediction efficiency for two systems (CH4/(O2 + N2) and H2/(O2 + N2)). Then, the algorithm was further applied to quantitatively analyze the relative importance values of seven MOF descriptors for five performance metrics of the two systems. Furthermore, the 20 best MOFs were also selected. Finally, the commonalities between the high-performance MOFs were analyzed, leading to three types of material design principles: tuned topology, alternative metal nodes, and organic linkers. As a result, this study provides microscopic insights into the capture of trace amounts of CH4 or H2 from air for applications involving coal mine spent air and hydrogen leakage.
Funder
National Natural Science Foundation of China
Pearl River Talent Recruitment Program
Natural Science Foundation of Guangdong Province
Guangzhou Municipal Science and Technology Project
R & D Program of Joint Institute of GZHU & ICoST
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献