Synthesis and Characterization of Novel Nanoporous Gl-POSS-Branched Polymeric Gas Separation Membranes

Author:

Zaripov Ilnaz,Davletbaeva Ilsiya,Faizulina Zulfiya,Davletbaev Ruslan,Gubaidullin AidarORCID,Atlaskin Artem,Vorotyntsev IlyaORCID

Abstract

Novel nanoporous Gl-POSS-branched polymers based on the macroinitiator of anionic nature, 2,4-toluene diisocyanate, and octaglycidyl polyhedral oligomeric silsesquioxane (Gl-POSS) were obtained as gas separation membranes. The synthesis of polymers was carried out using various loads of Gl-POSS. It was found that the main reaction proceeding with 2,4-toluene diisocyanate is the polyaddition, accompanied by the isocyanate groups opening of the carbonyl part. This unusual opening of isocyanate groups leads to the formation of coplanar acetal nature polyisocyanates (O-polyisocyanate). The terminal O-polyisocyanate links initiate the subsequent opening of the epoxide rings in Gl-POSS. As a result, Gl-POSS serves as a hard and bulky branching agent and creates the specific framing supramolecular structure, which leads to the formation of nanopores in the polymer, where the flexible polyether components are located inside the cavities. Thermal, mechanical, physical, and chemical properties of the obtained polymers were studied at various Gl-POSS contents in the polymer matrix. It was found that these polymers show high selectivity of gas transport properties for pure ammonia relative to nitrogen and hydrogen at ambient temperature. Measurements showed that the gas permeability coefficients and the values of ideal selectivity were in a non-additive dependence to the Gl-POSS content.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference78 articles.

1. Polymeric Gas Separation Membranes

2. Membrane engineering in process intensification—An overview

3. Membrane-based gas separation

4. Basic Principles of Membrane Technology;Mulder,1996

5. Membrane Technology and Application;Baker,2004

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3